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Abstract: A brief presents a parallel single-rail self-timed adder. It is based on a recursive formulation for 

performing multibit binary addition. The operation is parallel for those bits that do not need any carry chain 

propagation. Thus, the design attains logarithmic performance over random operand conditions without any 

special speedup circuitry or look-ahead schema. A practical implementation is provided along with a 

completion detection unit. The implementation is regular and does not have any practical limitations of high 

fanouts. A high fan-in gate is required though but this is unavoidable for asynchronous logic and is managed by 

connecting the transistors in parallel. Simulations have been performed using industry standard toolkits that 

verify the practicality and superiority of the proposed approach over existing asynchronous adders. 

Keywords: Asynchronous circuits, binary adders, CMOS design, digital arithmetic. 

 

I. INTRODUCTION 
A majority of the present-day digital systems are clock based or synchronous, which assume that 

signals are binary and time is discrete. In general, synchronous systems comprise a number of subsystems that 

change from one state to another depending on a global clock signal, with flip-flops (registers) being used to 

store the different states of the subsystems. A conventional synchronous system is portrayed by figure 1.1. The 

state updates within the registers are carried out on the rising edge (positive edge) or falling edge (negative 

edge) of the global clock – single edge triggering. The state of the global clock permits either data loading or 

data storage. Since the overall clock utilization is only 50% for single edge triggered systems, double edge 

triggered flip-flops were subsequently proposed in the literature with the motive of increasing the system 

throughput as data can be loaded on both the rising and falling clock edges and data is retained when the clock 

signal does not toggle [1] [2]. However, this usually comes at the expense of a larger 

 

 
Fig 1.1: A typical synchronous system stage 

 

 Silicon footprint due to greater number of transistors and more interconnects for the dual edge triggered 

flip-flop and consequently leads to more power consumption. Preserving the original data rate as that of single 

edge triggered flip-flop designs whilst operating at half the system clock frequency might be helpful in reducing 

the dynamic power dissipation as the transitions could be reduced by half, but eventually this may be offset by 

more leakage power dissipation [2], which is becoming dominant in deep submicron technologies. Moreover, 

this mechanism tends to forego the advantages associated with single edge triggering in that its set-up and hold 

times are larger compared to conventional flip-flops and any deviation from its 50% duty cycle can lead to 

timing failures in critical paths upsetting the system behaviour [3]. In addition, it is more sensitive to noise apart 

from introducing complexity in system design and as such, the specification on jitter tolerance is more stringent 

which complicates the design of the system phase lock loop. As a result, synchronous designs with rising or 

falling edge triggering have been predominant, being the mainstream of digital system architectures; 

nevertheless, it is becoming increasingly difficult to overcome some fundamental limitations inherent in this 

approach. 
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The International Technology Roadmap for Semiconductors (ITRS) predicts that system-wide 

synchronization is becoming infeasible owing to increasing silicon complexity. A clock-based system can 

operate correctly only if all parts of the system see the clock at the same time, which can happen only if the 

delay on the clock wire is negligible. However, with advances in technology, the systems tend to get bigger and 

bigger in terms of the number of transistors and as a result the delay on the clock wires can no longer be 

ignored. The problem of clock skew is thus a major bottleneck for many system designers. Since the clock 

signal controls all flip-flops to sample and store their input data synchronously, it tends to be highly loaded and 

the problem becomes more severe. A widely preferred solution is to distribute the global clock using a clock 

network (clock tree) with clock buffers and thereby control the clock skew. Consequently, this results in an 

increase in the capacitance of the clock net and also suffers from increased activity (typically two transitions per 

net per cycle), even ignoring possible hazard activity on such nets. 

 

The primary factors that govern the clock skew in a typical synchronous digital system are as follows: 

 Resistance, capacitance and inductance of the interconnection material used for the clock distribution 

network 

 Clock distribution network architecture, buffering schemes and clock buffers used · fabrication process 

variation over the chip area 

 Number of processing elements in the system and the load presented by each element to the clock 

distribution network 

 Rise and fall times and the clock frequency 

 

Various clock distribution strategies have been developed, with the most common and general 

approach being the use of buffered trees for equipotential clock distribution. However, to distribute high-speed 

clock signals, symmetric trees like the H-tree are preferred compared to the asymmetric buffered clock 

distribution tree structure. The H-tree network is the most widely used clock distribution network [4] – [6] to 

minimize the clock skew. It was shown in [7] that for an N × N array of processing elements, the clock pulse 

rise time and the clock skew associated with it are O(N3). Hence, with increase in N, the clock skew is likely to 

increase rapidly and become a stumbling block. Therefore, a distributed buffering scheme is often resorted to for 

synchronous digital integrated circuits by introducing buffers in the clock distribution network. However, the 

disadvantages of this approach are the extra area overhead and the increase in design sensitivity to process 

variations. Also, it has to be noted that buffers are the primary source of the total clock skew within a well-

balanced clock distribution network. Since global clock periods are now commonly less than half a nanosecond, 

variations in delay by tens of picoseconds can seriously degrade the performance and reliability of high-speed 

synchronous systems [8]. With Moore's law [9] having been a driving force through process generations, 

supported by continual innovations in processes and device materials[10], to relentlessly pursue after greater 

integrated circuit densities, and with variability of process and device parameters assuming ever greater 

significance [11] [12] as devices are scaled down to more narrow dimensions, the above problem might only get 

exacerbated. The bottom-line is that clock management is becoming increasingly difficult and solving it in 

todays high-speed complex system-on-chip designs appears to be a complex and costly affair. 

The second major problem faced by designers is power dissipation, which is a very important metric 

that has gained significance with the phenomenal growth of portable electronics. For mobile electronic 

applications, the average power consumption has become the most critical design concern. For maximum 

efficiency, all gates in the system should be performing useful work. However in synchronous systems, this is 

not usually the case. Consequently, synchronous systems tend to consume more power than necessary. Many 

gates switch unnecessarily since they are connected to the clock and not because they have to process new input 

data. However, to circumvent this problem, clock gating is widely employed so as not to enable those sub-

systems that are not required for any useful activity. The biggest gate is the clock driver itself which might 

occupy considerable area and must switch even if a small part of the system has something useful to do: the 

global clock, in general, was found to account for 15%-45% of the system power budget [13] and in a processor 

case study [14], it was found to be responsible for 34% of the total system power dissipation. 

 

1.1 Motivation and Context 

The problems of clock skew and power dissipation have been the major drivers for the worldwide 

resurgence of interest in asynchronous design – notable major projects include [15] – [29]. The design of clock-

free or asynchronous systems has thus become attractive for digital system designers during the past two 

decades although asynchronous logic was explored from the infancy of integrated circuit design [30] - [32]. But 

synchronous design provided a far more efficient vehicle for exploiting the technology in commercial 

applications. The 2006 Semiconductor Industry Association's (SIA's) ITRS report on design stated that the 
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percentage of designs driven by handshake clocking (asynchronous signaling) would rise from 11% in 2008 to 

40% by 2020. The latest ITRS update on design [33] predicts that design re-use (as a percentage of all logic) 

would increase from a current figure of 38% to 55% by 2020. Over this period, parameter uncertainty (as a 

percentage effect on sign-off delay) is projected to increase from 10% to 25%. In fact, reliability has been 

labeled as one of the five crosscutting design challenges, which drives home the point that design robustness is 

becoming an increasing priority in deep submicron technologies.  

The above projections tend to forecast and necessitate a considerable shift in the design paradigm from 

conventional synchronous logic to asynchronous logic, as the latter benefits owing to its ability to tolerate 

supply voltage, process parameter and temperature variations [15]. Due to the absence of a global clock 

reference, asynchronous circuits tend to have better noise and electro-magnetic compatibility properties than 

synchronous circuits [34]. Also, they feature greater modularity permitting convenient design reuse [36]. 

Asynchronous operation by itself does not imply low power, but often suggests low power opportunities based 

on the observation that asynchronous circuits only consume power when and where active [35] [36]. The recent 

demonstration of the potential advantages of the world's first 8-bit physically flexible asynchronous 

microprocessor design over a synchronous flexible version in terms of power and noise figures by Karaki et al. 

from Seiko Epson's Technology Platform Research Centre [37], which utilizes 4-phase handshaking and quasi-

delay-insensitive design style, endorses the future of self timed design techniques for even unconventional 

electronics. 

 

1.2 Existing System 

 Binary addition is the single most important operation that a processor performs. Most of the adders 

have been designed for synchronous circuits even though there is a strong interest in lockless/ asynchronous 

processors/circuits [1]. Asynchronous circuits do not assume any quantization of time. Therefore, they hold 

great potential for logic design as they are free from several problems of clocked (synchronous) circuits. In 

principle, logic flow in asynchronous circuits is controlled by a request-acknowledgment handshaking protocol 

to establish a pipeline in the absence of clocks. Explicit handshaking blocks for small elements, such as bit 

adders, are expensive. Therefore, it is implicitly and efficiently managed using dual-rail carry propagation in 

adders. A valid dual-rail carry output also provides acknowledgment from a single-bit adder block. Thus, 

asynchronous adders are either based on full dual-rail encoding of all signals (more formally using null 

convention logic [2] that uses symbolically correct logic instead of Boolean logic) or pipelined operation using 

single-rail data encoding and dual-rail carry representation for acknowledgments. While these constructs add 

robustness to circuit designs, they also introduce significant overhead to the average case performance benefits 

of asynchronous adders. Therefore, a more efficient alternative approach is worthy of consideration that can 

address these problems. 

 This brief presents an asynchronous parallel self-timed adder (PASTA) using the algorithm originally 

proposed in [3]. The design of PASTA is regular and uses half-adders (HAs) along with multiplexers requiring 

minimal interconnections. Thus, it is suitable for VLSI implementation. The design works in a parallel manner 

for independent carry chain blocks. The implementation in this brief is unique as it employs feedback through 

XOR logic gates to constitute a single-rail cyclic asynchronous sequential adder [4]. Cyclic circuits can be more 

resource efficient than their acyclic counterparts [5], [6]. On the other hand, wave pipelining (or maximal rate 

pipelining) is a technique that can apply pipelined inputs before the outputs are stabilized [7]. The proposed 

circuit manages automatic single-rail pipelining of the carry inputs separated by propagation and inertial delays 

of the gates in the circuit path. Thus, it is effectively a single rail wave-pipelined approach and quite different 

from conventional pipelined adders using dual-rail encoding to implicitly represent the pipelining of carry 

signals. 

 

II. BACKGROUND 
 There are a myriad designs of binary adders and we focus here on asynchronous self-timed adders. 

Self-timed refers to logic circuits that depend on and/or engineer timing assumptions for the correct operation. 

Self-timed adders have the potential to run faster averaged for dynamic data, as early completion sensing can 

avoid the need for the worst case bundled delay mechanism of synchronous circuits. They can be further 

classified as follows. 

 

A. Pipelined Adders Using Single-Rail Data Encoding 

 The asynchronous Req/Ack handshake can be used to enable the adder block as well as to establish the 

flow of carry signals. In most of the cases, a dual-rail carry convention is used for internal bitwise flow of carry 

outputs. These dual-rail signals can represent more than two logic values (invalid, 0, 1), and therefore can be 

used to generate bit-level acknowledgment when a bit operation is completed. Final completion is sensed when 
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all bit Ack signals are received (high). The carry-completion sensing adder is an example of a pipelined adder 

[8], which uses full adder (FA) functional blocks adapted for dual-rail carry. On the other hand, a speculative 

completion adder is proposed in [9]. It uses so-called abort logic and early completion to select the proper 

completion response from a number of fixed delay lines. However, the abort logic implementation is expensive 

due to high fan-in requirements. 

 

B. Delay Insensitive Adders Using Dual-Rail Encoding 

 Delay insensitive (DI) adders are asynchronous adders that assert bundling constraints or DI 

operations. Therefore, they can correctly operate in presence of bounded but unknown gate and wire delays [2]. 

There are many variants of DI adders, such as DI ripple carry adder (DIRCA) and DI carry look-ahead adder 

(DICLA). DI adders use dual-rail encoding and are assumed to increase complexity. Though dual-rail encoding 

doubles the wire complexity, they can still be used to produce circuits nearly as efficient as that of the single-rail 

variants using dynamic logic or nMOS only designs. An example 40 transistors per bit DIRCA adder is 

presentedin [8] while the conventional CMOS RCA uses 28 transistors. 

 

 
Fig. 1. General block diagram of PASTA. 

 

 
Fig. 2. State diagrams for PASTA. (a) Initial phase. (b) Iterative phase. 

 

 Similar to CLA, the DICLA defines carry propagate, generate, and kill equations in terms of dual-rail 

encoding [8]. They do not connect the carry signals in a chain but rather organize them in a hierarchical tree. 

Thus, they can potentially operate faster when there is long carry chain. A further optimization is provided from 

the observation that dual rail encoding logic can benefit from settling of either the 0 or 1 path. Dual-rail logic 

need not wait for both paths to be evaluated. Thus, it is possible to further speed up the carry look-ahead 

circuitry to send carry-generate/carry-kill signals to any level in the tree. This is elaborated in [8] and referred as 

DICLA with speedup circuitry (DICLASP). 

 

III. PROPOSED SYSTEM 
3.1 DESIGN OF PASTA 

 The architecture and theory behind PASTA is presented. The adder first accepts two input operands to 

perform half additions for each bit. Subsequently, it iterates using earlier generated carry and sums to perform 

half-additions repeatedly until all carry bits are consumed and settled at zero level. 

 

A. Architecture of PASTA 

 The general architecture of the adder is shown in Fig. 1. The selection input for two-input multiplexers 

corresponds to the Req handshake signal and will be a single 0 to 1 transition denoted by SEL. It will initially 

select the actual operands during SEL = 0 and will switch to feedback/carry paths for subsequent iterations 

using SEL = 1. The feedback path from the HAs enables the multiple iterations to continue until the completion 

when all carry signals will assume zero values. 
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B. State Diagrams 

 In Fig. 2, two state diagrams are drawn for the initial phase and the iterative phase of the proposed 

architecture. Each state is represented by (Ci+1 Si) pair where Ci+1, Si represent carry out and sum values, 

respectively, from the i
th

 bit adder block. During the initial phase, the circuit merely works as a combinational 

HA operating in fundamental mode. It is apparent that due to the use of HAs instead of FAs, state (11) cannot 

appear. 

 During the iterative phase (SEL = 1), the feedback path through multiplexer block is activated. The 

carry transitions (Ci ) are allowed as many times as needed to complete the recursion. From the definition of 

fundamental mode circuits, the present design cannot be considered as a fundamental mode circuit as the input–

outputs will go through several transitions before producing the final output. It is not a Muller circuit working 

outside the fundamental mode either as internally; several transitions will take place, as shown in the state 

diagram. This is analogous to cyclic sequential circuits where gate delays are utilized to separate individual 

states. 

 

C. Recursive Formula for Binary Addition 

 Theorem 1: The recursive formulation of (1)–(4) will produce correct sum for any number of bits and 

will terminate within a finite time. Proof: We prove the correctness of the algorithm by induction on the 

required number of iterations for completing the addition (meeting the terminating condition). Basis: Consider 

the operand choices for which no carry propagation is required, i.e., C0 i = 0 for ∀i, i ∈ [0..n]. The proposed 

formulation will produce the correct result by a single-bit computation time and terminate instantly as (4) is met. 

Thus, all the single-bit adders will successfully kill or propagate the carries until all carries are zero fulfilling the 

terminating condition. The mathematical form presented above is valid under the condition that the iterations 

progress synchronously for all bit levels and the required input and outputs for a specific iteration will also be in 

synchrony with the progress of one iteration. In the next section, we present an implementation of the proposed 

architecture which is subsequently verified using simulations. 

 
Fig. 3. CMOS implementation of PASTA. (a) Single-bit sum module. (b) 2×1 MUX for the 1 bit adder. (c) 

Single-bit carry module. (d) Completion signal detection circuit. 

3.2 Implementation 

                A CMOS implementation for the recursive circuit is shown in Fig. 3. For multiplexers and AND gates 

we have used TSMC library implementations while for the XOR gate we have used the faster ten transistor 

implementation based on transmission gate XOR to match the delay with AND gates [4]. The completion 

detection following (4) is negated to obtain an active high completion signal (TERM). This requires a large fan-

in n-input NOR gate. Therefore, an alternative more practical pseudo-nMOS ratio-ed design is used. The 

resulting design is shown in Fig. 3(d). Using the pseudo-nMOS design, the completion unit avoids the high fan-

in problem as all the connections are parallel. The pMOS transistor connected to VDD of these ratio-ed design 

acts as a load register, resulting in static current drain when some of the nMOS transistors are on 

simultaneously. In addition to the Ci s, the negative of SEL signal is also included for the TERM signal to 

ensure that the completion cannot be accidentally turned on during the initial selection phase of the actual 

inputs. It also prevents the pMOS pull up transistor from being always on. Hence, static current will only be 

flowing for the duration of the actual computation. VLSI layout has also been performed [Fig. 3(e)] for a 

standard cell environment using two metal layers. The layout occupies 270 λ × 130 λ for 1-bit resulting in 1.123 

Mλ2 area for 32-bit. The pull down transistors of the completion detection logic are included in the single-bit 

layout (the T terminal) while the pull-up transistor is additionally placed for the full 32-bit adder. It is nearly 

double the area required for RCA and is a little less than the most of the area efficient prefix tree adder, i.e., 

Brent–Kung adder (BKA).  
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IV. SIMULATION RESULTS 
 In this section, we present simulation results for different adders using Tanner EDA Tools version 14.3, 

running on 32-bit WINDOWS platform. For implementation of other adders, we have used standard library 

implementations of the basic gates. The custom adders such as DIRCA/DICLASP are implemented based on 

their most efficient designs. 

 Initially, we show how the present design of PASTA can effectively perform binary addition for 

different temperatures and process corners to validate the robustness under manufacturing and operational 

variations. In Fig. 4, the timing diagrams for worst and average cases corresponding to maximum and average 

length carry chain propagation over random input values are highlighted. The carry propagates through 

successive bit adders like a pulse as evident from Fig. 4(a). The best-case corresponding to minimum length 

carry chain (not shown here) does not involve any carry propagation, and hence incurs only a single-bit adder 

delay before producing the TERM signal. The worst-case involves maximum carry propagation cascaded delay 

due to the carry chain length of full 32 bit. 

 

 
Fig 4: Mux 2 x 1 schematic 

 

 
Fig 5: Basic Gates Output Waveforms 

 

 
Fig 6 Basic Gates Output Waveforms 
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 Fig 7: Basic Gates Output Waveforms 

 

 
Fig 8: Half adder Schematic  

 

 
Fig 8: Half adder Output Waveforms 

 

V. CONCLUSION 
 An efficient implementation of PASTA. Initially, the theoretical foundation for a single-rail wave-

pipelined adder is established. Subsequently, the architectural design and CMOS implementations are presented. 

The design achieves a very simple n-bit adder that is area and interconnection-wise equivalent to the simplest 

adder namely the RCA. Moreover, the circuit works in a parallel manner for independent carry chains, and thus 

achieves logarithmic average time performance over random input values. The completion detection unit for the 

proposed adder is also practical and efficient. Simulation results are used to verify the advantages of the 

proposed approach. 
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